- [2] G. Barth, R. Records, E. Bunnenberg, C. Djerassi & W. Voelter, J. Amer. chem. Soc. 93, 2545 (1971).
- [3] G. Barth, W. Voelter, E. Bunnenberg & C. Djerassi, J. Amer. chem. Soc. 94, 1293 (1972).
- [4] G. Barth, E. Bunnenberg & C. Djerassi, Anal. Biochem. (in press).
- [5] S. V. Konev in 'Fluorescence and Phosphorescence of Proteins and Nucleic Acids', ed. by Plenum Press, New York, 1967, p. 9.
- [6] N. Mataga, Y. Torihashi & K. Ezumi, Theoret. chim. Acta. 2, 158 (1964).
- [7] G. Weber, Biochem. J. 75, 335 (1960).
- [8] P. S. Song & W. E. Kurtin, J. Amer. chem. Soc. 91, 4892 (1969).
- [9] E. H. Strickland, J. Horwitz & C. Billups, Biochemistry 9, 4914 (1970).
- [10] J. R. Platt, J. chem. Physics 19, 101 (1951).
- [11] C. Djerassi, E. Bunnenberg & D. Elder, Pure and Appl. Chem. 25, 57 (1971).
- [12] P. N. Schatz & A. J. McCaffery, Quart Rev. 23, 552 (1969).
- [13] D. Caldwell, J. M. Thorne & H. Eyring, Ann. Rev. Phys. Chem. 22, 259 (1971).
- [14] W. Voelter, R. Records, E. Bunnenberg & C. Djerassi, J. Amer. chem. Soc. 90, 6163 (1968).
- [15] P. J. Stephens, W. Suëtaka & P. N. Schatz, J. chem. Physics 44, 4592 (1966).
- [16] F. Momicchioli & A. Rastelli, J. Mol. Spectrosc. 22, 310 (1967).
- [17] W. Klyne, R. J. Swan, N. J. Dastoor, A. A. Gorman & H. Schmid, Helv. 50, 115 (1967).
- [18] L. Bartlett, N. J. Dastoor, f. Hrbek, Jr., W. Klyne, H. Schmid & G. Snatzke, Helv. 54, 1238 (1971).
- [19] K. Bláha, Z. Koblicavá & J. Trojanek, Tetrahedron Letters, 1972, 2763.
- [20] S. R. Hawkins & J. H. Harshman, Rev. Sci. Instrum. 38, 50 (1967).
- [21] M. Hesse, 'Indolalkaloide in Tabellen', Springer Verlag, Berlin-Heidelberg-New York, 1968.

211. Exchange Equilibrium of Oxygen Isotopes between BrO_3^- , ClO_3^- , IO_3^- and Water

by S. C. Agarwal, P. Baertschi and H. Gamsjäger¹)

Eidgenössisches Institut für Reaktorforschung, Würenlingen AG

(5. V11. 72)

Summary. The liquid phase fractionation factors $\alpha_{\rm H} = ({\rm ^{18}O}/{\rm ^{16}O})_{\rm H_2O}/({\rm ^{16}O})_{\rm XO_3}$ and $\alpha_{\rm D} = ({\rm ^{18}O}/{\rm ^{16}O})_{\rm D_2O}/({\rm ^{18}O}/{\rm ^{16}O})_{\rm XO_3}$ (X = Cl, Br, I) were calculated quantum mechanically between 0 and 100°. Experimental values were obtained in the case of BrO₃⁻ at 60° showing good agreement with the calculated results.

In connection with the investigation of the exchange kinetics of oxygen between halogenate ions and water [1] it was of interest to determine the equilibrium fractionation factors

$$\alpha_{\rm H} = ({}^{18}{\rm O}/{}^{16}{\rm O})_{\rm H_{2}O} / ({}^{18}{\rm O}/{}^{16}{\rm O})_{\rm XO_{2}}$$
(1a)

$$\alpha_{\rm D} = ({\rm ^{18}O}/{\rm ^{16}O})_{\rm D_{2}O} / ({\rm ^{18}O}/{\rm ^{16}O})_{\rm XO_3}$$
(1b)

of the respective exchange reactions in the liquid phase

$$X^{16}O_2^{18}O^- + H_2^{16}O \rightleftharpoons X^{16}O_3^- + H_2^{18}O$$
 (2a)

$$X^{16}O_2^{18}O^- + D_2^{16}O \rightleftharpoons X^{16}O_3^- + D_2^{18}O.$$
 (2b)

1) Institut für anorganische, analytische und physikalische Chemie der Universität Bern.

2178

Since these fractionation factors could not be found in the literature they were calculated from the available experimental and theoretical data.

Calculation of fractionation factors $\alpha_{\rm H}$, $\alpha_{\rm D}$. – The quantum mechanics of isotopic exchange reactions according to the formulation of *Bigeleisen & Mayer* [2] leads to the following expressions:

$$\alpha_{\rm H} = Q_{\rm r} \left({\rm H}_2 * {\rm O} / {\rm H}_2 {\rm O} \right) / Q_{\rm r} \left({\rm XO}_2 * {\rm O}^- / {\rm XO}_3^- \right)$$
(3a)

$$\alpha_{\rm D} = Q_{\rm r} \left({\rm D_2*O/D_2O} \right) / Q_{\rm r} \left({\rm XO_2*O^-/XO_3^-} \right). \tag{3b}$$

 Q_r = reduced partition function²) ratio of isotopic molecules.

X = Cl, Br, I and $*O = {}^{18}O$.

Staschewsky [3] has calculated the gas phase partition function ratios for H_2*O/H_2O and D_2*O/D_2O considering the effects of anharmonicity and vibrational-rotational interactions. The reduced partition function ratios Q_r for liquid water can be obtained by multiplying these values with the factor $(18/16)^{3/2}$ and with the appropriate values of the distillation separation factor β'_H and β'_D , respectively, as derived from vapour pressure measurements of *Szapiro & Steckel* [4]. Thus the following relations apply to the H_2O -system (and similarly to the D_2O -system):

$$Q_{\mathbf{r}}(\mathbf{H}_{\mathbf{2}}^{*}O/\mathbf{H}_{\mathbf{2}}O)_{\mathbf{liq}} = Q_{\mathbf{r}}(\mathbf{H}_{\mathbf{2}}^{*}O/\mathbf{H}_{\mathbf{2}}O)_{\mathbf{vap}} \cdot \boldsymbol{\beta}_{\mathbf{H}}^{\prime}$$
(4)

with

$$\ln \beta'_{\rm H} = \left[1 - \frac{P_{\rm H_2O}}{\rm RT} \left(V_1 - B_0 \right) \right] \ln \left(P_{\rm H_2O} / P_{\rm H_2} *_O \right)$$
(5)

Since the correction term P/RT ($V_1 - B_0$) in Eq. (5) amounts to less than 0.016 and differs very little for H_2O and D_2O , only the values for H_2O were used. The calculated values of Q_r (H_2*O/H_2O)_{liq} and Q_r (D_2*O/D_2O)_{liq} are given in Table 1. The values for Q_r (H_2*O/H_2O)_{liq} are in close agreement with the values which O'Neil & Adami [5] obtained by measuring the oxygen isotope fractionation factors between CO_2 and $H_2O_{(liq)}$ and eliminating the calculated partition function ratio $Q_r(C*O_2/CO_2)$. These values are also given in Table 1.

Table 1. Calculated liquid phase reduced partition function ratios Q_r of isotopic H_2O and D_2O . In parentheses: values determined by O'Neil & Adami [5].

Temp. (°C)	$[Q_{r}(H_{2}^{18}O/H_{2}^{16}O) - 1] \cdot 10^{3}$		$[Q_r(D_2^{18}O/D_2^{16}O) - 1] \cdot 10^3$	
	83.68	(83.43)	101.97	
20	75.60	(75,58)	92.61	
40	69.04	(68.82)	84.49	
60	63.27	(62.81)	77.30	
80	58.12	(57.57)	70.88	
100	53.56	(52.90)	65.24	

²) The reduced partition function of a molecule is defined as the ratio of the quantum mechanical and the classical partition functions.

The reduced partition function ratios Q_r for the isotopic halogenate ions were calculated with a harmonic oscillator rigid rotator approximation. Translational and rotational partition functions in the liquid were neglected since for heavy molecules or ions as XO_a^- their contribution to the isotope effect is very small.

Thus,

$$Q_{\mathbf{r}}(XO_{2}^{*}O^{-}/XO_{3}^{-}) = \prod_{i=1}^{3n-6} \frac{u^{*}_{i} \exp(-u^{*}_{i}/2) / [l - \exp(-u^{*}_{i})]}{u_{i} \exp(-u_{i} /2) / [l - \exp(-u_{i})]}$$
(4)

with $u_i = hc \ \overline{\nu}_i/kT = 1.43880 \ \overline{\nu}_i/T$.

The Wilson F-G matrix method [6] was used to calculate the vibrational frequencies of XO_3^- and $XO_2^*O^-$. This calculation was performed with the aid of the computer programs of Schachtschneider [7], using the geometric parameters and force constants of Venkateswarlu et al. [8]. The force constants for ClO_3^- had to be recalculated because the A₁ type frequencies obtained with the data of Venkateswarlu were about 6-10% higher than the observed frequencies. The calculated frequencies for the anions $X^{16}O_3^-$ and $X^{16}O_2^{18}O^-$ are given in Table 2.

Table 2. Vibrational frequencies^a) of $X^{16}O_3^-$ and $X^{16}O_2^{-18}O^-$ (X = Cl, Br, I) in cm⁻¹

Mode of vibr.	X - O str.			O - X - O def.			
	antisym.		sym.	antisym.		sym.	
	963.9	963.9	939.6	480.5	480.5	620.9	
Cl ¹⁶ O ₂ ¹⁸ O-	963.9	946.5	926.0	474.8	468.9	609.1	
Br ¹⁶ O	829.1	829.1	801.0	350.4	350.4	442.5	
Br160,180-	829.1	815.0	777.0	346.7	341.3	435.8	
I ¹⁶ O-	809.8	809.8	781.0	326.4	326.4	357.4	
I ¹⁶ O, ¹⁸ O-	809.8	795.4	755.2	322.6	317.7	352.2	

The calculated values for the liquid-phase reduced partition function ratios Q_r of all the three $X^{16}O_2^{-18}O^-/X^{16}O_3^-$ -pairs in the temperature range of $0-100^\circ$ are given in Table 3.

Temp. °C	$\operatorname{Qr}\left(\frac{\operatorname{Cl^{16}O_2^{18}O^-}}{\operatorname{Cl^{16}O_3^-}}\right)$	$\operatorname{Qr}\left(\frac{\operatorname{Br^{16}O_2^{-16}O^-}}{\operatorname{Br^{16}O_3^-}}\right)$	$\operatorname{Qr}\left(\frac{\mathrm{I^{16}O_2^{-18}O^-}}{\mathrm{I^{16}O_3^-}}\right)$	
0	1.08537	1.07440	1.07329	
20	1.07563	1.06574	1.06474	
40	1.06743	1.05848	1.05758	
60	1.06048	1.05235	1.05153	
80	1.05454	1.04711	1.04636	
100	1.04941	1.04261	1.04192	

Table 3. Calculated liquid-phase reduced partition function ratios Q_r of isotopic halogenate ions

By introducing the Q_r values of Table 1 and Table 3 into Eq. (3a) and Eq. (3b) the corresponding fractionation factors α_H and α_D as given in Table 4 can be obtained.

Temp. °C	ClO ₃		BrO ₃		IO ₃	
	αH	α _D	α _H	α _D	αH	αD
0	0.99844	1.01529	1.00862	1.02564	1.00967	1.02671
20	0.99997	1.01579	1.00924	1.02520	1.01019	1.02617
40	1.00150	1.01598	1.00996	1.02456	1.01082	1.02543
60	1.00262	1.01585	1.01036	1.02369	1.01115	1.02448
80	1.00339	1.01549	1.01049	1.02267	1.01121	1.02340
100	1.00395	1.01508	1.01047	1.02167	1.01114	1.02235

Table 4. ¹⁸O/¹⁶O-separation factors $\alpha_{\rm H}$ ($\alpha_{\rm D}$) between liquid H_2O (D_2O) and halogenate ions

Experimental determination of $\alpha_{\rm H}$ and $\alpha_{\rm D}$ for BrO_3^- at 60° . – Solutions of KBrO₃ (0.05M) in 0.1M HNO₃ (DNO₃) were equilibrated at 60° for 24 hours (about 50 half times for exchange). KBrO₃, H₂O and D₂O of normal ¹⁸O content ($\sim 0.2\%$) were used. Samples of the equilibrated solution were poured into an excess of ice cooled AgNO₃ solution and the AgBrO₃ precipitate was centrifuged and washed with water, ethanol and acetone. The AgBrO₃ was then decomposed by heating in evacuated Pyrex containers to yield oxygen whose ¹⁸O/¹⁶O ratio was compared with that of a standard (tank oxygen) by means of a double-collector isotope-ratio mass spectrometer.

A comparable ¹⁸O/¹⁶O ratio in the water of the equilibrium solution was obtained in the following way: Standard tank oxygen was combined quantitatively with H₂ (small excess) over a Pd-catalyst leading to water (~ 30 ml) of exactly the same ¹⁸O/¹⁶O ratio as the standard tank oxygen. The ¹⁸O/¹⁶O ratio in this recombined water and in the solution water were now compared accurately using the CO₂ exchange technique [9] at 25°. Since the true ¹⁸O/¹⁶O ratios in the standard O₂ and the recombined water are the same, all discrimination effects by comparing ¹⁸O/¹⁶O ratios in H₂O (as CO₂) and O₂ can be eliminated, and the fractionation factor $\alpha_{\rm H}$ can be calculated easily.

A similar procedure was used in case of D_2O (99.8% D, 0.20% ¹⁸O) as solvent. Since no special recombination experiment with D_2 was carried out, the ratio of the fractionation factors of ¹⁸O/¹⁸O between CO₂ and H₂O ($\beta_{\rm H}$) and CO₂ and D₂O ($\beta_{\rm D}$) at the exchange temperature of 25° had to be introduced. Using the data of *Staschewsky* [10] this ratio becomes

$$\beta_{\rm H}/\beta_{\rm D} = 1.0424/1.0259 = 1.0161.$$

All isotope ratios were measured with a relative precision of about $\pm 0.3^{\circ}/_{\circ\circ}$.

From the measurements and Eq. (1) the following separation factors at 60° were secured

$$\alpha_{\rm H} = 1.010 \pm 0,001$$
 $\alpha_{\rm D} = 1.023 \pm 0.001$.

These values agree with the calculated values in Table 4 within the limits of error.

We thank Mr. A. Rabassa for carrying out parts of the experimental work. One of us (H.G.) is grateful to the Swiss National Foundation for financial support.

BIBLIOGRAPHY

- [1] H. Gamsjäger, A. Grütter & P. Baertschi, Helv. 55, 781 (1972).
- [2] J. Bigeleisen & M. G. Mayer, J. chem. Physics 15, 261 (1947).
- [3] D. Staschewsky, Ber. Bunseng. physik. Chem. 69, 426 (1965).
- [4] S. Szapiro & F. Steckel, Trans. Farad. Soc. 63, 883 (1967).
- [5] J. R. O'Neil & L. H. Adami, J. phys. Chem. 73, 1553 (1969).
- [6] E. B. Wilson, J. C. Decius & P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).
- [7] J. H. Schachtschneider, Shell Development Company, Emeryville, California, Project No. 31450, Techn. Reports 57-65 and 231-264 (1965).
- [8] K. Venkateswarlu & S. Sundaram, Proc. phys. Soc. London [A] 69, 180 (1956); K. Venkateswarlu & R. Thanalakshmi, Ind. J. pure and appl. Phys. 1, 377 (1963).
- [9] P. Baertschi, Helv. 36, 1352 (1953).
- [10] D. Staschewsky, Ber. Bunseng. physik. Chem. 68, 454 (1964).